Instructions 28-9413-25 AB

HiPrep Phenyl FF (high sub) 16/10 HiPrep Phenyl FF (low sub) 16/10 HiPrep Butyl FF 16/10 HiPrep Octyl FF 16/10

Introduction

HiPrep[™] Phenyl FF (high sub) 16/10, HiPrep Phenyl FF (low sub) 16/10, HiPrep Butyl FF 16/10, and HiPrep Octyl FF 16/10 are prepacked, ready to use columns for hydrophobic interaction chromatography (HIC). The columns provide fast, preparative separations of proteins and other biomolecules based on their hydrophobic interaction with hydrophobic groups attached to the uncharged gel. See table below for column characteristics.

Column data

Matrix	6% highly cross-linked spherical agarose (Phenyl)				
	4% highly cro	oss-linked spher	ical agarose (l	Butyl, Octyl)	
Mean particle size	90 µm				
Bed volume	20 ml				
Bed height	100 mm				
i.d.	16 mm				
Column composition	Polypropyler	ie			
Recommended flow rate	2–10 ml/min	(60–300 cm/h)			
Maximum flow rate [°]	10 ml/min (30	00 cm/h)			
Maximum pressure over the					
packed bed during operation, Δp^{\dagger}	0.15 MPa, 1.5	bar, 22 psi			
HiPrep column hardware					
pressure limit [*]	0.5 MPa, 5 bc	ır, 73 psi			
Storage	4°C to 30°C in 20% ethanol				
	Phenyl (high sub)	Phenyl (low sub)	Butyl	Octyl	
Hydrophobic ligand	Phenyl	Phenyl	Butyl	Octyl	
Ligand density					
(µmol/ml medium)	40	20	50	5	
pH stability					
short term	2-14	2-14	2-14	2-14	
long term and working range	3-13	3-13	3-13	3-13	

=viscosity.

Many chromatography systems are equipped with pressure gauges to measure the pressure at a particular point in the system, usually just after the pumps. The pressure measured here is the sum of the pre-column pressure, the pressure drop over the medium bed, and the post-column pressure. It is always higher than the pressure drop over the bed alone. We recommend keeping the pressure drop over the bed below 1.5 bar. Setting the upper limit of your pressure gauge to 1.5 bar will ensure the pump shuts down before the medium is overpressured.

If necessary, post-column pressure of up to 3.5 bar can be added to the limit without exceeding the column hardware limit. To determine post-column pressure, proceed as follows:

To avoid breaking the column, the post-column pressure must never exceed 3.5 bar.

- 1. Connect a piece of tubing in place of the column.
- . Run the pump at the maximum flow you intend to use for chromatography. Use a buffer with the same viscosity as you intend to use for chromatography. Note the back pressure as total pressure. 2.
- 3. Disconnect the tubing and run at the same flow rate used in step 2.
- Note this back pressure as pre-column pressure. 4. Calculate the post-column pressure as total pressure minus pre-column pressure
- If the post-column pressure is higher than 3.5 bar, take steps to reduce it (shorten tubing, clear clogged tubing, or change flow restrictors) and perform steps 1–4 again until the post-column pressure is below 3.5 bar. When the post-column pressure is satisfactory, add the post-column pressure to 1.5 bar and set this as the upper pressure limit on the chromatography system

First time use

Ensure an appropriate pressure limit has been set.

Equilibrate the column for first time use or after long-term storage by running: a) 100 ml elution buffer (low salt) at 5 ml/min

(see section "Choice of elution buffer recommendations).

b) 100 ml of start buffer (high salt) at 5 ml/min.

These HiPrep columns can be used directly on ÄKTAdesign™ system without the need for extra connectors.

HiPrep Phenyl FF (high sub) 16/10, HiPrep Phenyl FF (low sub) 16/10, HiPrep Butyl FF 16/10 or HiPrep Octyl FF 16/10

Try these conditions first

Hydrophobic interaction chromatography is usually performed with moderately high concentrations of salts in the start buffer (salt promotes adsorption) and elution is achieved by a linear or stepwise decrease in concentration of the salt.

Start buffer	0.05 M sodium phosphate buffer, 1 M (NH ₄) ₂ SO ₄ , pH 7.0
Elution buffer	0.05 M sodium phosphate buffer, pH 7.0
Flow rate	5 ml/min at room temperature
Gradient	0–100% elution buffer in 200 ml (10 CV)

Equilibration before a new run

Proceed according to the instructions in section "First time use". Please read the back of these instructions for information on optimizing a separation.

Buffers and solvent resistance

De-gas and filter all solutions through a 0.45 µm filter to increase column life-time.

Daily use

All commonly used aqueous buffers, pH 3–13

- Guanidine hydrochloride, up to 6 M
- Urea, up to 8 M (not tested for butyl and octyl media)

Cleaning

Sodium hydroxide, up to 1 M Ethanol, up to 70% Isopropanol up to 30%

Avoid Solutions <pH 2 Phenol

Sample preparation

Dissolve the sample in start buffer (high salt), filter through 0.45 µm or centrifuge at 10 000 × g for 10 min.

Delivery/storage

The column is supplied in 20% ethanol. If the column is to be stored for more than two days after use, clean the column according to the procedure described under "Cleaning-in-Place (CIP)" Then equilibrate with at least 100 ml of 20% ethanol or 0.01 M NaOH at a flow rate of 5 ml/min.

Note: HiPrep columns cannot be opened or refilled.

0

Choice of buffer

All standard aqueous buffers can be used.

When selecting salt for the start buffer refer to the Hofmeister series (see below) Increasing the salting-out effect strengthens the hydrophobic interactions, whereas increasing the chaotropic effect weakens them

Increasing salting-out effect

	-4				- 5		Increasir	ig chaotro	phic effect
Cations:	NH4	Rb⁺	K⁺	Na⁺	C. ⁺	Li ⁺	Ma ²⁺	Ba ²⁺	
Anions:	PO4 3-	SO42-	CH2COO	Cl	Br	NO ₃	CIO	-	SCN

Table 1 lists suggested volatile buffers used in cases where the purified substance has to be freeze-dried

Table 1.	Volatile	buffer	system
----------	----------	--------	--------

рН	Substances
2.3-3.5	Pyridine/formic acid
3.0-5.0	Trimethylamine/formic acid
4.0-6.0	Trimethylamine/acetic acid
6.8-8.8	Trimethylamine/HCl
7.0-8.5	Ammonia/formic acid
8.5-10.0	Ammonia/acetic acid
7.0-12.0	Trimethylamine/CO2
8.0-9.5	Ammonium carbonate/ammonia
8.5-10.5	Ethanolamine/HCl

Optimization

Perform your first run according to "Try these conditions first". If the obtained results are unsatisfactory, consider the following

Effect
Higher salt concentration increases retention time
Lower salt concentration decreases
retention times
May improve resolution
Improves resolution
Increases retention times
Changes selectivity
May increase capacity
Selectivity change

Cleaning-in-Place (CIP)

Regular cleaning

Regenerate the column after each run by rinsing it with 100 ml distilled water at a flow rate of 5 ml/min at room temperature to elute material still bound to the column. Re-equilibrate the column with at least 100 ml start buffer at a flow rate of 5 ml/min at room temperature until the UV baseline and pH/conductivity values are stable.

More rigorous cleaning

Reverse the flow direction and run the following sequence of solutions at a flow rate of 5 ml/min at room temperature:

- 80 ml of a 1 M NaOH solution (removes precipitated proteins, hydrophobically bound proteins, and lipoproteins from the column) followed by 80 ml distilled water.
- 80 ml of 70% ethanol or 30% isopropanol (removes proteins, lipoproteins, and lipids that are strongly hydrophobically bound to the column) followed by 60 ml distilled water.

After cleaning, equilibrate the column with approximately 100 ml start buffer at a flow rate of 5 ml/min at room temperature before use.

Note: HiPrep columns cannot be opened or refilled.

Troubleshooting

Symptom	Remedy
Increased back pressure	Reverse the flow direction and pump 100 ml elution buffer at a over the column flow rate of 5 ml/min at room temperature through the column. Return to normal flow direction and run 100 ml buffer at a flow rate of 5 ml/min through the column. If back pressure is not decreased, reverse the flow direction again
	and follow the rigorous cleaning instructions.
Loss of resolution and/or decreased sample recovery	Follow the procedure described in the section "More rigorous cleaning".
Air in the column	Reverse the flow direction and pump 100 ml of well de-gassed start buffer through the column at a flow rate of 5 ml/min at room temperature.

Column performance control

We recommend checking the column performance at regular intervals. Figure 1 describes how to check the function of the four different prepacked HiPrep 16/10 HIC columns.

Sample	Cytochrome C (10 mg/ml) Ribonuclease A (30 mg/ml) Lysozyme (10 mg/ml) -chymotrypsinogen (10 mg/ml)
Sample volume	2 ml
Start buffer	100 mM sodium phosphate, 1.7 M (NH_4)_2SO_4, pH 7.0 $$
Elution buffer	100 mM sodium phosphate, pH 7.0
Flow rate	2 ml/min, 60 cm/hr (room temperature)
Gradient	0–100% elution buffer in 200 ml (10 CV)
Instrumentation	ÄKTAexplorer™ 100

a) HiPrep Phenyl FF (high sub) 16/10

Fig 1. Typical chromatogram from a function test of a) HiPrep Phenyl FF (high sub) 16/10, b) HiPrep Phenyl FF (low sub) 16/10, c) HiPrep Butyl FF 16/10 and d) HiPrep Octyl FF 16/10.

USA

Japan

GE Healthcare Bio-Sciences Corp.

Piscataway, NJ 08855-1327

GE Healthcare Bio-Sciences KK

Shinjuku-ku, Tokyo 169-0073

Sanken Bldg., 3-25-1, Hyakunincho

800 Centennial Avenue, P.O. Box 1327

www.gelifesciences.com/protein-purification www.gelifesciences.com/purification_techsupport

GE Healthcare Bio-Sciences AB Björkgatan 30 751 84 Uppsala Sweden

magination at work

28-9413-25 AB 11/2008

GE Healthcare UK Limited

Buckinghamshire, HP7 9NA

GE Healthcare Europe, GmbH

Amersham Place

Munzinger Strasse 5

D-79111 Freiburg

Little Chalfont

UK

Intended use

The HiPrep Phenyl FF (high sub) 16/10, HiPrep Phenyl FF (low sub) 16/10, HiPrep Butyl FF 16/10, and HiPrep Octyl FF 16/10 are intended for research use only, and shall not be used in any clinical or *in vitro* procedures for diagnostic purposes.

Ordering information

Product	No. per pack	Code No.
HiPrep Phenyl FF (high sub) 16/10	1 x 20 ml	28-9365-45
HiPrep Phenyl FF (low sub) 16/10	1 x 20 ml	28-9365-46
HiPrep Butyl FF 16/10	1 x 20 ml	28-9365-47
HiPrep Octyl FF 16/10	1 x 20 ml	28-9365-48
Companion products	No. per pack	Code No
HiTrap™ HIC Selection Kit	7 × 1 ml	28-4110-07
HiTrap Phenyl FF (high sub)	5 × 1 ml	17-1355-01
HiTrap Phenyl FF (high sub)	5 × 5 ml	17-5193-01
HiTrap Phenyl FF (low sub)	5 × 1 ml	17-1353-01
HiTrap Phenyl FF (low sub)	5 × 5 ml	17-5194-01
HiTrap Phenyl HP	5 × 1 ml	17-1351-01
HiTrap Phenyl HP	5 × 5 ml	17-5195-01
HiTrap Octyl FF	5 × 1 ml	17-1359-01
HiTrap Octyl FF	5 × 5 ml	17-5196-01
HiTrap Butyl FF	5 × 1 ml	17-1357-01
HiTrap Butyl FF	5 × 5 ml	17-5197-01
HiTrap Butyl-S FF	5 × 1 ml	17-0978-13
HiTrap Butyl-S FF	5 × 5 ml	17-0978-14
HiTrap Butyl HP	5 x 1 ml	28-4110-01
HiTrap Butyl HP	5 x 5 ml	28-4110-05
HiPrep 26/10 Desalting	1 x 53 ml	17-5087-01
HiPrep 26/10 Desalting	4 x 53 ml	17-5087-02
Accessories	No. per pack	Code No.
HiTrap/HiPrep 1/16" male connector for ÄKTAdesign To connect columns with 1/16" connections to FPI C™ System:	8	28-4010-81
Union M6 female/1/16" male	5	18-3858-01
Related literature		Code No.
Handbook, Hydrophobic Interaction Chromatography and Rev	ersed	11-0012-69
Phase Chromotography, Principles & Methods Prepacked chromatography columns for ÄKTAdesign and		11 0012 01

Further information

▼

For more information, please visit

www.gelifesciences.com/protein-purification

www.gelifesciences.com/purification_techsupport

Refer also to the handbook above, contact our technical support team, or your local representative.

GE, imagination at work and GE monogram are trademarks of General Electric Company.

Ettan, HiPrep, HiTrap, ÄKTAdesign, FPLC, and Drop Design are trademarks of GE Healthcare companies. All third party trademarks are the property of their respective owners.

© 1998–2008 General Electric Company – All rights reserved.

First published Feb. 1998

All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare which supplies them. A copy of these terms and conditions is available on request. Contact your local GE Healthcare representative for the most current information.